Force field bias in protein folding simulations.
نویسندگان
چکیده
Long timescale (>1 micros) molecular dynamics simulations of protein folding offer a powerful tool for understanding the atomic-scale interactions that determine a protein's folding pathway and stabilize its native state. Unfortunately, when the simulated protein fails to fold, it is often unclear whether the failure is due to a deficiency in the underlying force fields or simply a lack of sufficient simulation time. We examine one such case, the human Pin1 WW domain, using the recently developed deactivated morphing method to calculate free energy differences between misfolded and folded states. We find that the force field we used favors the misfolded states, explaining the failure of the folding simulations. Possible further applications of deactivated morphing and implications for force field development are discussed.
منابع مشابه
How robust are protein folding simulations with respect to force field parameterization?
Molecular dynamics simulations hold the promise of providing an atomic-level description of protein folding that cannot easily be obtained from experiments. Here, we examine the extent to which the molecular mechanics force field used in such simulations might influence the observed folding pathways. To that end, we performed equilibrium simulations of a fast-folding variant of the villin headp...
متن کاملDual folding pathways of an / protein from all-atom ab initio folding simulations
Successful ab initio folding of proteins with both -helix and -sheet requires a delicate balance among a variety of forces in the simulation model, which may explain that the successful folding of any / proteins to within experimental error has yet to be reported. Here we demonstrate that it is an achievable goal to fold / proteins with a force field emphasizing the balance between the two majo...
متن کاملFolding and Unfolding Simulations of a Three-Stranded Beta-Sheet Protein
Understanding the folding processes of a protein into its three-dimensional native structure only with its amino-acid sequence information is a long-standing challenge in modern science. Twohundred independent folding simulations (starting from non-native conformations) and twohundred independent unfolding simulations (starting from the folded native structure) are performed using the united-re...
متن کاملExploring the energy landscapes of protein folding simulations with Bayesian computation.
Nested sampling is a Bayesian sampling technique developed to explore probability distributions localized in an exponentially small area of the parameter space. The algorithm provides both posterior samples and an estimate of the evidence (marginal likelihood) of the model. The nested sampling algorithm also provides an efficient way to calculate free energies and the expectation value of therm...
متن کاملIn silico folding of a three helix protein and characterization of its free-energy landscape in an all-atom force field.
We report the reproducible first-principles folding of the 40 amino-acid, three-helix headpiece of the HIV accessory protein in a recently developed all-atom free-energy force field. Six of 20 simulations using an adapted basin-hopping method converged to better than 3 A backbone rms deviation to the experimental structure. Using over 60 000 low-energy conformations of this protein, we construc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 96 9 شماره
صفحات -
تاریخ انتشار 2009